Wujie Zheng
wjzheng@cse.cuhk.edu.hk

Test Selection for Result Inspection via Mining Predicate Rules

Michael R. Lyu
lyu@cse.cuhk.edu.hk

Tao Xie
xie@csc.ncsu.edu

The Chinese University of Hong Kong

NC STATE UNIVERSITY

It is labor-intensive to manually verify outputs of a large set of tests not equipped with test
oracles.

Test selection for result inspection helps to reduce the cost of test-result inspection by
selecting a small subset of tests likely to reveal faults.

Previous Work: Mining operational models from passing tests

Mine operational models satisfied by all passing tests as test oracles, and then select violating
tests for result inspection.

m Daikon: Mine rules over variables from passing tests i
W Jov/Eclat: Select new tests violating operational models g 1s+]
[s]

B DIDUCE: Mine models of variables from normal
j . . . Precondition: n > 0

execution of a |0ng'runn|ng appllcatlon Postcondition: s = (3j:0 < j < n:b[j])

Loop invariant: 0 <i<nands=(3j:0<j<i:b[])

Limitations: The number of existing passing tests is often limited. Mined operational models
could be noisy and thus many violations could be false positives.

Our Approach: Mining operational models from unverified tests

Mine common operational models, not always true in all observed traces, from a (potentially
large) set of unverified tests based on mining predicate rules.

Rationale: A program not of poor quality should . "+, " :
pass most of the tests, i.e., the real operational " *#« -+ - @ f
model should be satisfied by most of the tests. : % *.. * '+ '

Mining common operational models from ‘.~
unverified tests can thus reduce the noise.

Real operational
model

Operational model
learned from limited
. . . passing tests unverified tests

Challenges: (1) Cannot simply discard a potential common operational model whenever it is

violated. (2) To collect the evaluations of all models for postmortem analysis could incur high
runtime overhead (if Daikon-like operational models are used).

Operational model
learned from all the

Solution:
B Collect values of simple predicates at runtime.
B Generate and evaluate predicate rules: implication relationships between predicates, as
potential operational models after running all the tests.
o Only mine rules x=>y, where x and y are simple predicates
o For each predicate y, select rule x=>y with the highest confidence
B Select a set of tests that violate all the mined predicate rules for result inspection.

Example Program

int test(int x, int) B The real operational model

1
N
3 if(x0) The program would fail if z = 0ay >«
4 y=y-x: // should be y=y-x+1 . .
5 i) P1 Line 3. 50 In passing tests, the program should satisfy
[
7
8
9

return y; P2: Line 3, x<=0 a precondition = < 0Vy <z
else P3: Line 5, y=0

P4: Line 5, y<=0

return 0 B The simple predicates
We observe that a failure is not likely to be

predicted by the violation of a single predicate.

An Example Program Predicates

Testinput Expected Output Actual Output Predicate Profiles

1 =1, y=0 0 P2 P4 B The predicate rules

2.x=0,y=1 1 ! P2, P3 P1 = P4 corresponds to a precondition
3.x=1,y=0 0 0 PL P4))

4.5=1.y=1 1 0 PL, P4 r<0vVy <z

5.x=1,y=2 2 1 PLP3

This is similar to and weaker than the real
operational model. Its violation should also
lead to the violation of the real operational
model and indicate a failure, such as Test 5.

Preliminary Results

] Sublect 1: the Slemens su|te Table 1. Test selection in the Siemens suite

Tests and Predicate Profiles

Figure 1. An example program

; Program Original Test Set Our approach Random Sampling
o 130 fa‘ulty‘verfsmns 0f07 progéa}ms that #Tests | #Failed |#Tests | #faulty |#Tests #faulty
range in size from 170 to 540 lines Tests verslons versions
0, (avg) detected detected

o On a\/.erage' only 1.53% (45/2945) of print_tokens | 4130 69.1 41 6/7 41 217
the original tests are needed to be prinCiokens?| 4115 | 2237 | 47 | 10710 Ey] 82710
checked, which can still reveal 74.6% replace 5542 | 1058 | 76 | 2631 76| 13.831

(97/130) of the faults, while random Sihecfl;li 2373 fzg j? gz : 22;;9

. 0 schedule2 | 2 32 ¥ .

sampllng can reveal Only 45.4% fcas 1608 385 38 26/41 38 15.6/41
(59/130) of the faults. o | 1052 | %26 | B | s | 23 | 165
all{avg) 2925 81.3 45 97/130 45 58.6/130

B Subject 2: the grep program

o A unix utility to search a file for a pattern; 13,358 lines of C code; 3 buggy versions that fail 3, 4,
and 132 times running the 470 tests, respectively.

o Our approach selects 82, 86, and 89 tests for these versions, which reveal all the 3 faults.

o For each version, at least one failing test ranked in top 20.

o Randomly select 20 tests for each version. In the 5 times of random selection, the selected tests
do not reveal the faults of the first 2 versions but always reveal the faults of the 3 version.

References

[1] http://sir.unl.edu/php/index.php

[2] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program
Invariants to support program evolution. IEEE TSE, 27(2):99-123, 2001.

[3] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly detection. In
ICSE, pages 291-301, 2002.

[4] B. Liblit. Cooperative Bug Isolation. PhD thesis, University of California, Berkeley, Dec. 2004.
[5] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and classification of test inputs. In
ECOOP, pages 504-527, 2005.

[6] T. Xie and D. Notkin. Tool-assisted unit test selection based on operational violations. In ASE,
pages 40-48, 2003.

